Vector Database
Published on: October 07, 2025
Tags: #vector-database #ai
High-Level Architecture of a Vector Database
graph TD subgraph "Vector Database" A[Vector Storage] B[Indexing Layer - ANN Algorithms] C[Query Processing Engine] D[Metadata Store] end E["Unstructured Data
(Text, Images, Audio)"] --> F{Embedding Model}; F --> G[Vector Embeddings]; G --> A; A <--> B; B <--> C; A <--> D; H[User Query] --> I{Query Vectorization}; I --> C; C --> J[Ranked Search Results]; subgraph "Query Options" K[Similarity Search] L[Metadata Filtering] end K --> C; L --> C; style F fill:#f9f,stroke:#333,stroke-width:2px style G fill:#ccf,stroke:#333,stroke-width:2px style I fill:#f9f,stroke:#333,stroke-width:2px
The Data Ingestion and Indexing Pipeline
graph LR A[Start] --> B["Ingest Raw Data
e.g., documents, images"]; B --> C["Apply Embedding Model
(e.g., BERT, ResNet)"]; C --> D[Generate Vector Embeddings]; D --> E["Store Vectors and
Associated Metadata"]; E --> F[Update or Build ANN Index]; F --> G[End - Ready for Queries]; style C fill:#f9f,stroke:#333,stroke-width:2px style F fill:#9f9,stroke:#333,stroke-width:2px
Similarity Search Query Process
sequenceDiagram participant Client as Client/User participant EmbeddingModel as Embedding Model participant VectorDB as Vector Database Client->>EmbeddingModel: 1. Send query data (e.g., "What are vector databases?") EmbeddingModel-->>Client: 2. Return query vector [0.1, 0.9, ...] Client->>VectorDB: 3. Execute similarity search with query vector activate VectorDB VectorDB->>VectorDB: 4. Use ANN Index to find nearest neighbors VectorDB-->>Client: 5. Return ranked list of similar vectors (and their IDs) deactivate VectorDB Client->>VectorDB: 6. (Optional) Fetch metadata for the returned IDs activate VectorDB VectorDB-->>Client: 7. Return metadata (e.g., original text, image URL) deactivate VectorDB