Few-Shot Prompting
Published on: October 05, 2025
Tags: #few-shot-prompting #ai
The Spectrum of Prompting: Zero, One, and Few-Shot
graph TD subgraph Prompting Spectrum A[Start: Define Task] --> B{Provide Examples?}; B -- No --> C[Zero-Shot Prompt
Instruction + Query]; B -- Yes --> D{How Many Examples?}; D -- One --> E[One-Shot Prompt
Instruction + 1 Example + Query]; D -- Multiple --> F[Few-Shot Prompt
Instruction + 2+ Examples + Query]; end C --> G([LLM Generates Output]); E --> G; F --> G;
How In-Context Learning Works (Simplified)
graph TD subgraph Prompt Processing A[" User Prompt
Instruction: Translate English to French.
Example 1: sea otter -> loutre de mer
Example 2: cheese -> fromage
Query: peppermint -> ??? "] end subgraph LLM Internal Process B[1.Tokenization & Embedding
Prompt is converted into numerical vectors] C{2.Transformer Attention Layers} D[" Self-Attention Mechanism
The vector for 'peppermint' (Query)
attends to vectors for 'sea otter' & 'cheese' (Keys)
to understand the 'English -> French' pattern from the examples (Values). "] end subgraph Output Generation E[3.Contextualized Representation
Model understands the task based on context] F[4.Generated Output
menthe poivrée] end A --> B --> C --> D --> E --> F
Few-Shot Prompting vs. Fine-Tuning
graph TD A[Pre-trained LLM] --> B(Adapt to New Task); B --> C{Few-Shot Prompting}; B --> D{Fine-Tuning}; subgraph "Few-Shot Prompting Workflow" C --> C1[1.Craft a prompt with a few examples]; C1 --> C2["2.Send prompt to the model
(Inference)"]; C2 --> C3[3.Get task-specific output]; C3 --> C4[Result: No model weights are updated]; end subgraph "Fine-Tuning Workflow" D --> D1[1.Prepare a large labeled dataset]; D1 --> D2["2.Train the model on the new dataset
(Training)"]; D2 --> D3[3.A new, fine-tuned model is created]; D3 --> D4[Result: Model weights are updated]; end
Advanced Few-Shot Techniques
graph TD A["Base Prompt
(Instruction + New Query)"] subgraph "Standard Few-Shot" B[+Few Input/Output Examples] --> C[Standard Few-Shot Prompt] end subgraph "Chain-of-Thought (CoT)" D[+Examples with Reasoning Steps] --> E["Few-Shot CoT Prompt
(Teaches the model HOW to think)"] end subgraph "Retrieval Augmented Generation (RAG)" F[+Retrieved External Documents] --> G["RAG-Enhanced Prompt
(Gives the model relevant knowledge)"] end A --> B A --> D A --> F