Fine-Tuning
Published on: October 04, 2025
Tags: #fine-tuning #ai
High-Level Overview: Training from Scratch vs. Fine-Tuning
graph TD subgraph "Fine-Tuning Process" direction TB E(Large Pre-Trained Model) --> F[Load Pre-Trained Weights]; G[Smaller, Task-Specific Dataset]; F & G --> H{Training Step: Update Weights}; H --> I[Fine-Tuned Model]; end subgraph "Training from Scratch" direction TB A[Large, General Dataset] --> B(Initialize Model with Random Weights); B --> C{Train all layers}; C --> D[Trained Model for Specific Task]; end %% Styling style E fill:#f8d7da,stroke:#721c24,stroke-width:2px style G fill:#d4edda,stroke:#155724,stroke-width:2px style A fill:#cde4ff,stroke:#004085,stroke-width:2px
The Fine-Tuning Workflow
graph TD A[Start] --> B(1.Select a Suitable Pre-Trained Model); B --> C(2.Prepare a High-Quality, Task-Specific Dataset); C --> D["3.Adapt Model Architecture
(e.g., Replace the Final Layer)"]; D --> F(4.Choose a Fine-Tuning Strategy); F --> G[Full Fine-Tuning]; F --> H[Layer Freezing]; F --> I["Parameter-Efficient Fine-Tuning (PEFT)"]; G --> J(5.Train & Optimize the Model); H --> J; I --> J; J --> K(6.Evaluate Performance on a Test Set); K --> L{Results Satisfactory?}; L -- No --> F; L -- Yes --> M[End: Deployed Fine-Tuned Model]; %% Styling style A fill:#d4edda,stroke:#155724,stroke-width:2px style M fill:#d4edda,stroke:#155724,stroke-width:2px
Layer Freezing vs. Full Fine-Tuning
graph TB %% Define styles for all layer types classDef base fill:#d6d8ff,stroke:#6f42c1,color:#000 classDef trainable fill:#f8d7da,stroke:#721c24,color:#000 classDef frozen fill:#e2e3e5,stroke:#383d41,color:#000 subgraph "Legend" L1(Trainable); L2(Frozen); L3(Pre-Trained); end subgraph "3.Path B: Layer Freezing (Early Layers Frozen)" direction TB C1(Layer 1) --> C2(Layer 2) --> C3(...) --> Cn(New Final Layer) end subgraph "2.Path A: Full Fine-Tuning (All Layers Trainable)" direction TB B1(Layer 1) --> B2(Layer 2) --> B3(...) --> Bn(New Final Layer) end subgraph "1.Start: Pre-Trained Model" direction TB A1(Layer 1) --> A2(Layer 2) --> A3(...) --> An(Final Layer) end class A1,A2,A3,An base class B1,B2,B3,Bn trainable class C1,C2 frozen class C3,Cn trainable %% Invisible links to enforce order and branching A1 ~~~ B1 A1 ~~~ C1 class L1 trainable; class L2 frozen; class L3 base;
Parameter-Efficient Fine-Tuning (PEFT)
graph TB %% Define styles for clarity classDef frozen fill:#e2e3e5,stroke:#383d41 classDef trainable_full fill:#f8d7da,stroke:#721c24 classDef trainable_peft fill:#d4edda,stroke:#155724 classDef base fill:#d6d8ff,stroke:#6f42c1 subgraph "1.Start with Pre-Trained Model" A["Large Model
(e.g., 10B Parameters)"] end class A base A -- "Method A:
Full Fine-Tuning" --> B["Large Model
(All 10B parameters
are updated)"] A -- "Method B:
Parameter-Efficient FT" --> C["Large Model (Frozen)
(Original 10B parameters
are NOT updated)"] C -- "+Injects" --> D["Small Adapter
(e.g., ~1M new
parameters are updated)"] %% Apply styles class B trainable_full class C frozen class D trainable_peft subgraph "Legend" L1(Base/Frozen); L2(Trainable - Full); L3(Trainable - PEFT); end class L1 frozen; class L2 trainable_full; class L3 trainable_peft