Improving RAG Quality and Accuracy
Published on: September 10, 2025
High-Level Overview of RAG Optimization
graph TD subgraph "Input" Query[User Query] end subgraph "Retrieval Stage" Chunking["Data Indexing &
Chunking"] --> Search{"Hybrid Search &
Fine-Tuning"} end subgraph "Augmentation Stage" Augment["Re-ranking &
Prompt Engineering"] end subgraph "Generation Stage" Generate["LLM Generation &
Post-Processing"] end subgraph "Output" Response[High-Quality Response] end subgraph "Continuous Improvemt Loop" Feedback["Evaluation & Feedback"] end %% --- Define the Flow --- Query --> Chunking Search --> Augment Augment --> Generate Generate --> Response %% --- Define the Feedback Loop --- Feedback -.-> Chunking Feedback -.-> Augment Feedback -.-> Generate
Improving the quality and accuracy of the Retrieval Stage
graph TD subgraph "Knowledge Base
Preparation" KB1[Raw Documents] --> KB2("Content-Aware
Chunking"); KB2 --> KB3(Add Metadata); KB3 --> KB4("Optimized
Knowledge Base"); end subgraph "Query Processing
and Search" Q1[User Query] --> Q2(Query Transformation); Q2 --> S1(Semantic Search); S1 --> E1("Fine-tuned
Embedding Model"); Q2 --> S2(Keyword Search); S2 --> E2(e.g., BM25); E1 --> R1(Combine & Rank); E2 --> R1; R1 --> R2[Retrieved Context]; end %% --- Connections to Knowledge Base --- E1 -- searches --> KB4; E2 -- searches --> KB4;
Improving the quality and accuracy of the Augmentation & Generation
graph TD A["Initial Retrieved
Context"] --> B[Re-ranking Model]; B --> C["Optimized &
Prioritized Context"]; subgraph "Prompt Construction" U[User Query] --> P; C --> P("Prompt Engineering
Template"); P --> F[Final Prompt for LLM]; end subgraph "Response Generation" F --> LLM(Generative LLM); LLM --> Post(Post-processing); Post --> Guard("Guardrails &
Formatting"); Guard --> Final["Final Response
with Citations"]; end subgraph "Evaluation" Eval("Evaluation Framework
e.g., Ragas") end Final --> Eval