Improving RAG Quality and Accuracy
Published on: 10 September 2025
High-Level Overview of RAG Optimization
graph TD
subgraph "Input"
Query[User Query]
end
subgraph "Retrieval Stage"
Chunking["Data Indexing &
Chunking"] --> Search{"Hybrid Search &
Fine-Tuning"}
end
subgraph "Augmentation Stage"
Augment["Re-ranking &
Prompt Engineering"]
end
subgraph "Generation Stage"
Generate["LLM Generation &
Post-Processing"]
end
subgraph "Output"
Response[High-Quality Response]
end
subgraph "Continuous Improvemt Loop"
Feedback["Evaluation & Feedback"]
end
%% --- Define the Flow ---
Query --> Chunking
Search --> Augment
Augment --> Generate
Generate --> Response
%% --- Define the Feedback Loop ---
Feedback -.-> Chunking
Feedback -.-> Augment
Feedback -.-> Generate
Improving the quality and accuracy of the Retrieval Stage
graph TD
subgraph "Knowledge Base
Preparation"
KB1[Raw Documents] --> KB2("Content-Aware
Chunking");
KB2 --> KB3(Add Metadata);
KB3 --> KB4("Optimized
Knowledge Base");
end
subgraph "Query Processing
and Search"
Q1[User Query] --> Q2(Query Transformation);
Q2 --> S1(Semantic Search);
S1 --> E1("Fine-tuned
Embedding Model");
Q2 --> S2(Keyword Search);
S2 --> E2(e.g., BM25);
E1 --> R1(Combine & Rank);
E2 --> R1;
R1 --> R2[Retrieved Context];
end
%% --- Connections to Knowledge Base ---
E1 -- searches --> KB4;
E2 -- searches --> KB4;
Improving the quality and accuracy of the Augmentation & Generation
graph TD
A["Initial Retrieved
Context"] --> B[Re-ranking Model];
B --> C["Optimized &
Prioritized Context"];
subgraph "Prompt Construction"
U[User Query] --> P;
C --> P("Prompt Engineering
Template");
P --> F[Final Prompt for LLM];
end
subgraph "Response Generation"
F --> LLM(Generative LLM);
LLM --> Post(Post-processing);
Post --> Guard("Guardrails &
Formatting");
Guard --> Final["Final Response
with Citations"];
end
subgraph "Evaluation"
Eval("Evaluation Framework
e.g., Ragas")
end
Final --> Eval